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Optimization over the efficient set: overview
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Abstract. Over the past several decades, the optimization over the efficient set has seen a substantial
development. The aim of this paper is to provide a state-of-the-art survey of the development. Given
p linear criteria c1x, . . . , cpx and a feasible region X of Rn, the linear multicriteria problem is to
find a point x of X such that no point x′ of X satisfies (c1x′, . . . , cpx′) � (c1x, . . . , cpx) and
(c1x′, . . . , cpx′) �= (c1x, . . . , cpx). Such a point is called an efficient point. The optimization over
the efficient set is the maximization of a given function φ over the set of efficient points. The difficulty
of this problem is mainly due to the nonconvexity of this set. The existing algorithms for solving this
problem could be classified into several groups such as adjacent vertex search algorithm, nonadjacent
vertex search algorithm, branch-and-bound based algorithm, Lagrangian relaxation based algorithm,
dual approach and bisection algorithm. In this paper we review a typical algorithm from each group
and compare them from the computational point of view.
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1. Introduction

The problem we consider in this paper is the optimization over the set of efficient
points of the linear multiple criteria program

(MC)

∣∣∣∣∣ vector max Cx

s.t. x ∈ X,

where C is a p × n matrix with rows ci’s, and X is a polyhedral set of Rn defined
as X = { x | x ∈ Rn;Ax = b; x � 0 }. To avoid the technicality we assume
throughout the paper that X is nonempty and bounded. Let XE denote the set
of efficient points, whose definition will be given in the next section. Then the
problem is formulated as

(PE)

∣∣∣∣∣ max φ(x)

s.t. x ∈ XE,

where φ : Rn→ R is a continuous function to be maximized.
The main difficulty of the problem arises from the nonconvexity of the efficient

set XE , which is the union of several faces of X. This problem was first considered
by Philip (1972), in which an algorithm based on moving to adjacent efficient
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vertices is outlined when φ is a linear funciton, and lots of papers followed his
work.

The purpose of this paper is to survey the existing algorithms for Problem (PE)
as well as some variations. We will not discuss the merits and demerits of the
algorithms because we have not yet had enough computational experience to eval-
uate them. Theoretically interesting algorithms do not always work efficiently, on
the contrary, naive methods can surpass sophisticated algotrithms in computation
time. We should be careful not to nip the promising algorithms in the bud.

After reviewing the well-known facts concerning problems (MC) and (PE) in
Section 2, the adjacent vertex search algorithms and the nonadjacent vertex search
algorithms will be explained in Section 3 and Section 4. In Section 5 we introduce
the face search algorithm, which is based on the enumeration of faces that consti-
tute the efficient set. Section 6 is devoted to the branch-and-bound method based on
the conical partition, and Section 7 to the Lagrangian relaxation methods. The dual
approach and the bisection algorithm will be explained in Section 8 and Section 9.
Some other methods are briefly outlined in Section 10. Some conclusion will be
given in the last section.

2. Basic results of linear multicriteria program

Throughout this paper we use the following notations: Rk denotes the set of k-
dimensional real column vectors, Rk+ = { x | x ∈ Rk; x � 0 } and Rk++ =
{ x | x ∈ Rk; x > 0 }. Rk is the set of k-dimensional real row vectors, and Rk+ and
Rk++ are defined in the similar way. We use e and 1 to denote a row vector and a
column vector of ones of an appropriate dimension. XV denotes the set of vertices
(extreme points) of X.

DEFINITION 2.1. A point x ∈ Rn is said to be an efficient point of Problem
(MC) if x ∈ X and there is no point x′ ∈ X such that Cx � Cx′ and Cx �= Cx′.
We denote the set of efficient points of (MC) by XE . A point x ∈ Rn is said to be
a weakly efficient point of Problem (MC) if x ∈ X and there is no point x′ ∈ X
such that Cx < Cx′. We denote the set of weakly efficient points of (MC) by XW .

DEFINITION 2.2. The set Y = CX = { y | y ∈ Rp; y = Cx for some x ∈
X } is called the outcome set. The set Y� = Y + Rp− = { y | y ∈ Rp; y �
Cx for some x ∈ X } is called the lower outcome set, and Y< = Y + Rp−− = { y |
y ∈ Rp; y < Cx for some x ∈ X } is called the strictly lower outcome set.

DEFINITION 2.3. A point y ∈ Y is said to be an efficient outcome if there is no
point y′ ∈ Y such that y � y′ and y �= y′, in other words, Y ∩ (y +Rp+) = {y}. We
denote the set of efficient outcomes by YE. A point y ∈ Y is said to be a weakly
efficient outcome if there is no point y′ ∈ Y such that y < y′, in other words,
Y ∩ (y + Rp++) = ∅. We denote the set of weakly efficient outcomes by YW .

The following lemma is a restatement of these definitions.
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LEMMA 2.4. (i) XE = { x | x ∈ X;Cx ∈ YE }. (ii) XW = { x | x ∈ X;Cx ∈
YW }.
DEFINITION 2.5. For λ ∈ Rp++ and x ∈ X let

gλ(x) = max { λCx′ | x′ ∈ X;Cx′ � Cx } − λCx, (1)

which is called the gap function. When λ = e, we will omit the subscript λ and
denote gλ simply by g.

As can be seen readily, x ∈ X is in XE if and only if gλ(x) = 0, and a point x′
which solves max { λCx′ | x′ ∈ X;Cx′ � Cx } is in XE . The theory of parametric
linear program shows that gλ is a piecewise linear concave function. Furthermore
the following property is readily seen.

LEMMA 2.6. If Cx = Cx′ then gλ(x) = gλ(x′).
We first introduce several well-known results, whose proof can be found in, for

example Benson (1995), Sawaragi et al. (1985), Steuer (1985), and White (1982).

THEOREM 2.7.

XE =
{
x

∣∣∣∣ x ∈ X; ∃λ ∈ Rp++ such that
λCx � λCx′ for ∀x′ ∈ X

}
(2)

=

 x

∣∣∣∣∣∣
x ∈ X;�x′ ∈ Rn such that
Cx′ � 0;Cx′ �= 0;Ax′ = 0;
x′i � 0 for i with xi = 0


 (3)

=
{
x

∣∣∣∣ x ∈ X; ∃(λ, µ, ν) ∈ Rp++ × Rm × Rn+ such that
λC − µA+ ν = 0; νx = 0

}
(4)

=
{
x

∣∣∣∣ x ∈ X; ∃(λ, µ) ∈ Rp++ × Rm such that
λC − µA � 0;λCx − µb = 0

}
(5)

= { x | x ∈ X; gλ(x) = 0 }. (6)

Furthermore, there is an M > 0 such that Rp++ above can be replaced by the
(p − 1)-dimensional simplex defined by

 = { λ | λ ∈ Rp+;λ � e;λ1 = M }. (7)

Proof. The equivalence among (2), (3), (4) and (5) follows from the duality the-
orem of linear program. We will prove only that defined by (7) can replace Rp++
in (2), (4) and (5). By (2)XE is the union of finitely many faces, say F 1, . . . , FL of
X such that F# is the optimal set of maximizing λ#Cx overX for some λ# ∈ Rp++.
Let α# = 1/(mini=1,...,p λ

#
i ) and M = max#=1...,L α

#(λ#1), where 1 is the p-
dimensional column vector of ones. Then for # = 1, . . . , L (M/λ#1)λ# lies in  
defined by (7) and F# remains the optimal set of maximizing (M/λ#1)λ#Cx over
X. �
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Denote

(SC(λ))

∣∣∣∣∣ max λCx

s.t. x ∈ X,

then (2) means that every efficient point is an optimal solution of the single criterion
problem (SC(λ)) defined for some λ ∈  . The condition (4) remains identical as
long as the set of binding constraints at x does not change. Therefore, if points x
and x′ lie in the relative interior of the same face of X, we see that x ∈ XE if and
only if x′ ∈ XE .

THEOREM 2.8. The set XE is connected. Any two vertices in XE are connected
by a path of efficient edges, where an efficient edge is an edge of X contained in
XE.

For the proof of Theorem 2.8 see Theorem 9.19 and Theorem 9.23 in Steuer (1985),
Theorem 3.31 in Sawaragi et al. (1985) and Naccache (1978).

Let x = (xB, xN) = (B−1b, 0) be a basic feasible solution of X and let A =
[B,N] and C = [CB,CN ] be the partitions of A and C corresponding to the basic
and nonbasic parts of x, respectively.

LEMMA 2.9.
(i) Let x = (xB, xN) = (B−1b, 0) be a basic feasible solution of X. Then x ∈ XE

if and only if λ(CN−CBB−1N)−νBB−1N � 0 for some λ ∈  and νB ∈ Rm+
such that νBxB = 0.

(ii) If x = (xB, xN) = (B−1b, 0) is a nondegenerate basic solution, the above
condition is reduced to λ(CN − CBB−1N) � 0 for some λ ∈  .

(iii) Let cj and aj be the columns of CN and N , respectively, corresponding to a
nonbasic variable xj . If λ(CN − CBB−1N) � 0 and λ(cj − CBB−1aj ) = 0
for some λ ∈  , then the edge obtained by increasing xj is an efficient edge.

Note that the condition of Lemma 2.9 for an efficient basic solution x = (B−1b, 0)
and a nonbasic varaible xj holds if and only if

max { λ(cj − CBB−1aj ) | λ ∈  ;λ(CN − CBB−1N) � 0 } = 0. (8)

The problems we consider in this paper are the following optimization over the
efficient set XE and the weakly efficient set XW :

(PE)

∣∣∣∣∣ max φ(x)

s.t. x ∈ XE
and

(PW )

∣∣∣∣∣ max φ(x)

s.t. x ∈ XW.
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For these problems we write φ(PE) and φ(PW) to denote their optimal values,
respectively.

Theorem 2.7 will provide several equivalent formulations of Problem (PE). By
(2) we have a infinitely constrained equivalence∣∣∣∣∣∣∣

max φ(x)

s.t. x ∈ X;λ ∈  
λCx � λCx′ for all x′ ∈ X.

By (4) and (5) we have∣∣∣∣∣∣∣
max φ(x)

s.t. x ∈ X;λ ∈  ;µ ∈ Rm; ν ∈ Rn+
λC − µA+ ν = 0; νx = 0,

and ∣∣∣∣∣∣∣
max φ(x)

s.t. x ∈ X;λ ∈  ;µ ∈ Rm
λC − µA � 0;λCx − µb = 0.

Note that even if φ is linear, these problems contain a nonlinear equality constraint.
Using the gap function we obtain another equivalent form∣∣∣∣∣ max φ(x)

s.t. x ∈ X; gλ(x) = 0,

where λ is arbitrarily chosen from  and fixed. Since gλ(x) � 0 for all x ∈ X, the
last equality constraint gλ(x) = 0 can be replaced by gλ(x) � 0, which yields∣∣∣∣∣ max φ(x)

s.t. x ∈ X; gλ(x) � 0.

Since gλ is a concave function, the constraint gλ(x) � 0 is a reverse convex
constraint. See Tuy (1998) and Horst and Tuy (1996) for the reverse convex con-
strained optimization problems.

3. Adjacent vertex search algorithms

The algorithms proposed in Philip (1972), Ecker and Song (1994) and Fülöp (1994)
for a linear function φ, and in Bolintineanu (1993) for a quasi-convex function φ are
mainly based on the two techniques: moving from an efficent vertex to an efficient
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neighbor with a larger objective function value via an efficient edge, and cutting
off the portion of X where φ takes a smaller value than the incumbent objective
function value. We assume for the time being the quasi-convex function φ and will
follow the line of Bolintineanu (1993).

For x, x′ ∈ XV let [x, x′] denote the edge connecting x and x′. For x ∈ XV ∩XE
let

NE(x) = { x′ | x′ ∈ XV ∩XE; [x, x′] ⊆ XE }, (9)

i.e., the set of efficient vertices linked to x by an efficient edge. Then by the quasi-
convexity of φ we have the lemma.

LEMMA 3.1. Let x ∈ XV ∩XE and suppose { x′ | x′ ∈ NE(x);φ(x′) > φ(x) } =
∅. Then x is a local maximum point for (PE).

The algorithm is outlined as follows. Here we denote the two halfspaces determ-
ined by a hyperplane H = { x | x ∈ Rn; ax = α } by H+ = { x | x ∈ Rn; ax � α }
and H− = { x | x ∈ Rn; ax � α }, and their interiors by H++ and H−−, respect-
ively. (See Fig. 1).
〈0〉 (Initialization)

Set p = k = 0, X0 = X and find x0 ∈ XV ∩XE . If NE(x0) = ∅ then x0 is the
optimal solution of (PE). Otherwise, go to the major cycle 〈p〉.

〈p〉 (Major cycle)
〈p1〉 If { x | x ∈ NE(xp);φ(x) > φ(xp) } �= ∅, choose xp+1 from this set, p =

p + 1 and go to 〈p〉.
〈p2〉 Otherwise, let Lp = { x | φ(x) � φ(xp) } and go to the minor cycle 〈k〉.

〈k〉 (Minor cycle)
〈k1〉 Find vk ∈ argmax{φ(x) | x ∈ Xk }. If φ(xp) � φ(vk) − ε for some tol-

erance ε > 0, then stop with xp as an ε-approximate optimal solution.
Otherwise, go to 〈k2〉.

〈k2〉 Find a supporting hyperplane Hk of Lp such that Lp ⊆ Hk+ and vk ∈ Hk−−.
〈k3〉 If there is an efficient edge [u′, u′′] such that [u′, u′′] ∩ Hk �= ∅ and

max{φ(u′), φ(u′′)} > φ(xp), then set xp+1 be one of u′ and u′′ with a
larger objective function value. Set p = p + 1 and go to the major cycle
〈p〉. Otherwise, go to 〈k4〉.

〈k4〉 Set Xk+1 = Xk ∩Hk+, k = k + 1 and go to the minor cycle 〈k〉.
The alogrithm generates a sequences of efficient vertices x0, x1, . . . and polytopes
X0, X1, . . . such that φ(x0) < φ(x1) < · · · and X = X0 ⊇ X1 ⊇ · · · . Let uk

denote the point at which Hk supports Lp. It can be seen that if the angle between
vk − uk and the normal vector of Hk pointing toward vk is less than some constant
δ, then limk→∞ φ(vk) = φ(xp). Then we see that for a given positive ε the minor
cycle does not repeat infinitely.

LEMMA 3.2. If the above condition on the angle between vk − uk and the nor-
mal vector of Hk is satisfied, the minor cycle terminates after a finite number of
iterations for each p.
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Figure 1. Level set Lp and cutting plane Hk .

Proof. The condition implies limk→∞ φ(vk) = φ(xp), hence the stopping cri-
terion φ(xp) � φ(vk)− ε will be satisfied within a finite number of iterations. �

The most costly and crucial step would be 〈k3〉 as well as 〈k1〉, in which a
quasi-convex maximization problem is to be solved. We will not go into detail of
how to solve the quasi-convex maximization problem. See, for example, Horst and
Tuy (1996).

Step 〈k3〉 is based on the following observation.

LEMMA 3.3. Let Fk = Xk∩Hk and FkE be the set of efficient points of vector max
{Cx | x ∈ Fk }. Then XE ∩ Fk ⊆ FkE .

Proof. If x ∈ XE ∩Fk, there is no point x′ ∈ X such that Cx′ � Cx and Cx′ �=
Cx. Then clearly no points in Fk meet this condition, which means x ∈ FkE . �
This lemma shows that if we enumerate all the efficient vertices of FkE , we can see
if there is the edge desired in step 〈k3〉. Namely, step 〈k3〉 is carried out by gen-
erating the efficient vertices of Fk by a standard algorithm for linear multicriteria
optimization such as ADBASE by Steuer (1995) till one of them turns out to be in
XE, and then for such a point, checking if it lies on an efficient edge of Xk with
endpoints u′ and u′′ such that max{φ(u′), φ(u′′)} > φ(xp).

LEMMA 3.4. XE ⊆ Xk for k = 0, 1 . . . .
Proof. Since XE ⊆ X0 = X, suppose XE ⊆ Xk as the inductive hypothesis.

If XE �⊆ Xk+1, there is x′ ∈ XV ∩ XE such that x′ �∈ Hk+. By the construction of
Hk we see φ(x′) > φ(xp). Then by Theorem 2.8 there is an efficient edge [u′, u′′]
with [u′, u′′] ∩ Hk �= ∅ and max{φ(u′), φ(u′′)} > φ(xp). This is contrary to the
fact that Xk+1 was generated. �
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LEMMA 3.5. When the algorithm terminates with xp and vk satisfying φ(xp) �
φ(vk)− ε, xp is an ε-approximate optimal solution of (PE).

Proof. By Lemma 3.4 we obtain

φ(PE) = max {φ(x) | x ∈ XE } � max {φ(x) | x ∈ Xk }
= φ(vk) � φ(xp)+ ε � φ(PE)+ ε.

�
THEOREM 3.6. The algorithm provides an ε-approximate optimal solution of
Problem (PE) after a finite number of iterations.

Proof. The minor cycle terminates within finitely many iterations for each p
as shown in Lemma 3.2, and points xp’s are efficient vertices of X satisfying
φ(x0) < φ(x1) < · · · , and hence distinct. Therefore the finiteness of XV ∩ XE
and Lemma 3.5 imply the theorem. �

A preliminary computational experiment for small problems up to n = 7,m =
7, p = 4 with a convex quadratic or linear objective function is reported in Bolint-
ineanu (1993), where it is observed that the vertices, including those on the cutting
planes, generated by the algorithm are fewer than the efficient vertices of X.

When φ is a linear function dx for d ∈ Rn, the algorithm is substantially simpli-
fied. Suppose we have obtained xp ∈ XV∩XE with { x | x ∈ NE(xp); dx>dxp }=
∅ after several repetitions of the major cycle. Then the lower level set is the half
space Lp = { x | dx � dxp } and the supporting hyperplane of this set is uniquely
determined by Hp = { x | dx = dxp }. Then the efficient vertices of Fk = X ∩
Hk are enumerated to check if Hk intersects an efficient edge [u′, u′′] of X such
that max{du′, du′′} > dxp . When no such edge exists, we conclude from the
connectedness of XE that

XE ⊆ { x | dx � dxp } (10)

and hence xp is an optimal solution of (PE). Thus, k is never incremented through
the algorithm.

In the enumeration of efficient vertices of Fk = X∩Hk Fülöp (1994) proposed
a cutting plane algorithm based on convexity and disjunctive cuts. Assume we have
a vertex x̄ ∈ Fk which is not efficient, i.e., gλ(x̄) > 0, where gλ is the gap fucntion
defined in Definition 2.5. The portion of Fk with gλ(x) > 0, which is a convex
set, should be cut off and eliminated for further enumeration. Fülöp proposed to
introduce a convexity cut tx � 1, where t ∈ Rn, and reduce the set Fk to Fk ∩
{ x | tx � 1 }. Suppose the nondeneracy at x̄, and for each nonbasic variable xj let
zj be the direction of edge of Fk adjacent to x̄ obtained by increasing xj . Note that
zj is easily obtained from the dictionary corresponding to x̄. Let

sj = sup { s | s ∈ R;C(x̄ + szj ) � Cx; x ∈ Fk }, (11)
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then we have the convexity cut as follows. Note that the constraint C(x̄+szj ) � Cx
together with x ∈ Fk means that C(x̄ + szj ) be in the lower outcome set of CFk.

LEMMA 3.7. Suppose sj > 0 for every nonbasic variable xj of x̄. Let t ∈ Rn be
defined by

tj =
{

1/sj if xj is a nonbasic variable and sj <∞,

0 otherwise.

Then t x̄ < 1, and tx � 1 for all efficient points x in Fk.

See Horst and Tuy (1996) for further detail of convexity cut. Everytime a noneffi-
cient vertex is found, Fk is reduced by the convexity cut, which might lighten the
computational burden. No computational experiment is reported in Fülöp (1994).

Ecker and Song (1994) proposed to solve max{ cix | x ∈ X ∩ Hk+ } for i =
1, . . . , p to find the next iterate xp+1 before resorting to the vertex enumeration of
Fk.

4. Nonadjacent vertex search algorithm

The algorithms which trace the adjacent vertices need a step of enumerating all
efficient vertices of a polyhedral set with a lower dimension. This section explains a
nonadjacent vertex search algorithm proposed by Benson (1992), which dispenses
with the vertex enumeration.

We assume the linear objective function φ(x) = dx. Suppose we have k + 1
efficient points x0, x1, . . . , xk ∈ XE and let αk = max{ dxj | j = 0, 1, . . . , k } and
(P k) be the problem, which plays a central role in the algorithm, of finding a point
(x, λ) ∈ Rn × Rp satisfying

(P k)

∣∣∣∣∣∣∣∣∣

λCx � λCxj for j = 0, 1, . . . , k

x ∈ X
λ ∈  
dx > αk.

REMARK 4.1. If (x̄, λ̄) ∈ X × satisfies the constraints

λCx � λCxj for j = 0, 1, . . . , k

of (P k), we see that x̄ is an efficient point of the convex hull of x0, . . . , xk and x̄
itself. In this sense Problem (P k) is an inner approximation of Problem (PE).

We start with the case where Problem (P k) has no solution.

LEMMA 4.2. Suppose x0, x1, . . . , xk ∈ XE and Problem (P k) has no solution.
Then x∗ ∈ argmax{ dxj | j = 0, 1, . . . , k } is an optimal solution of (PE).
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Proof. Since (P k) has no solution, if x ∈ X together with some λ ∈  satisfies

λCx � λCx′ for all x′ ∈ X (12)

then dx � αk, i.e., x ∈ XE implies dx � αk. This and x∗ ∈ XE yield the lemma. �
Leaving the method of solving (P k) till later on, we give the algorithm first.

〈0〉 (Initialization) Find an efficient vertex x0, set k = 0 and go to 〈k〉.
〈k〉 (Iteration k)
〈k1〉 Find a solution (x, λ) ∈ Rn × Rp of (P k). If no solution exists, x∗ ∈

argmax{ dxj | j = 0, . . . , k } is an optimal solution of (PE). Otherwise,
set (x̄k+1, λ̄k+1) be the solution found.

〈k2〉 Solve the linear program

(T estk)

∣∣∣∣∣∣∣
max eCx

s.t. Cx � Cx̄k+1

x ∈ X

for a solution x̂. If eCx̂ = eCx̄k+1, go to 〈k3〉. Otherwise, go to 〈k5〉.
〈k3〉 If x̄k+1 is a vertex of X, then set xk+1 = x̄k+1, k = k + 1 and go to 〈k〉.

Otherwise, go to 〈k4〉.
〈k4〉 Let F be a face of X whose relative interior contains x̄k+1, and solve the

linear program

(Facek)

∣∣∣∣∣ max dx

s.t. x ∈ F

for an extreme point xk+1. Set k = k + 1 and go to 〈k〉.
〈k5〉 Solve (SC(λ̄k+1)) for a solution xk+1, set k = k + 1 and go to 〈k〉.

Note that whether x̄k+1 is a vertex of X can be seen by checking the linear inde-
pendence of colunms of A corresponding to positive components of x̄k+1.

There may be various ways of determining the face F of 〈k4〉. One possible
way is

F = { x | x ∈ X; xj = 0 for j with x̄k+1
j = 0 }. (13)

Benson proposes to define it by

F = { x | x ∈ X; (e + u)Cx = v }, (14)

where u is an optimal dual variable vector corresponding to the constraint Cx �
Cx̄k+1 of (T estk) and v = max { (e + u)Cx | x ∈ X }.

The following lemma shows that xk’s are efficient vertices of X.

LEMMA 4.3. xk ∈ XV ∩XE for k = 0, 1, . . . .
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Proof. Since it is clear that xj ∈ XV , we only show that xj ∈ XE . When xk+1

is computed in either 〈k3〉 or 〈k5〉, it is an optimal solution of either (T estk) or
(SC(λ̄k+1)). Then clearly xk+1 ∈ XE . When xk+1 is generated in 〈k4〉, it lies in the
face whose relative interior contains the efficient point x̄k+1. Then by Theorem 2.7
we see xk+1 ∈ XE. �

Now we show that the algorithm always generates a sequence of distinct vertices
of XE .

LEMMA 4.4. xk+1 �∈ { xj | j = 0, 1, . . . , k }.
Proof. Three cases should be considered. In 〈k3〉 xk+1 is given by xk+1 = x̄k+1,

which satisfies dx̄k+1 > max { dxj | j = 0, . . . , k }, and hence xk+1 differs from
any point of x0, . . . , xk . By construction dxk+1 � dx̄k+1 in 〈k4〉 and the same
argument applies. Now suppose xk+1 is generated in 〈k5〉. Then x̄k+1 �∈ XE ,
i.e., there is a point, say x̃ ∈ X with Cx̃ � Cx̄k+1 and Cx̃ �= Cx̄k+1. Since
λ̄k+1 > 0 we see λ̄k+1Cx̃ > λ̄k+1Cx̄k+1. Since xk+1 solves (SC(λ̄k+1)), we also
see λ̄k+1Cxk+1 � λ̄k+1Cx̃. Then for j = 0, . . . , k

λ̄k+1Cxk+1 � λ̄k+1Cx̃ > λ̄k+1Cx̄k+1 � λ̄k+1Cxj (15)

holds. This means that xk+1 �∈ { xj | j = 0, . . . , k }. �

Note that in either case of 〈k3〉 and 〈k4〉 dxk+1 > max{ dxj | j = 0, . . . , k },
i.e., monotone increasing of the objective function value, but in case 〈k5〉 it may
decrease. Combining the above lemmas we have the following theorem.

THEOREM 4.5. Suppose Problem (P k) is solved within a finite number of itera-
tions. Then the algorithm provides an optimal solution x∗ of Problem (PE) after a
finite number of iterations.

Now we go back to Problem (P k) and explain the algorithm proposed by Ben-
son (1991). For a solution of (P k) it suffices to solve

(P k)

∣∣∣∣∣∣∣∣∣

max dx

s.t. λCx � λCxj for j = 0, 1, . . . , k

x ∈ X
λ ∈  .

Let Y = { y | y ∈ Rp;min{−cix | x ∈ X} � yi � max{−cix | x ∈ X} for i =
1, . . . , p } and  be a p-dimensional hypercube containing  , for example  =
{ λ | λ ∈ Rp; e � λ � (M + p − 1)e }. Then (P k) is equivalent to
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max dx

s.t. λy + λCxj � 0 for j = 0, 1, . . . , k

y + Cx = 0

x ∈ X
y ∈ Y
λ ∈  .

The constraint λ1 = M could be added, but is not necessary. The bilinear term λy
makes the problem difficult to solve and hence should be relaxed. The algorithm
in Benson (1991) is based on the successive partition of the hypercube Y ×  
into smaller hypercubes and the relaxation of the problem restricted to the smaller
hypercubes to a linear program. Let Y

′ ×  ′ = ∏p

i=1[αi, αi] ×
∏p

i=1[βi, βi] be a

smaller hypercube contained in Y× . Note that Y
′× ′ =∏p

i=1([αi, αi]×[βi, βi])
by rearranging the coordinates and λy is the sum of bilinear terms λiyi defined on
[αi, αi] × [βi, βi]. Al-Khayyal and Falk (1983) show that the convex envelope of

λiyi on the two-dimensional cube [αi, αi] × [βi, βi], the pointwise supremum of

all convex functions underestimating λiyi on [αi, αi] × [βi, βi], is given by the

piecewise linear convex function max{β
i
yi + αiλi − βiαi, βiyi + αiλi − βiαi }.

Then the convex envelope of λy is given by
∑p

i=1 max{β
i
yi +αiλi −βiαi, βiyi +

αiλi − βiαi } and the constraint λy + λCxj � 0 is relaxed to

p∑
i=1

max{β
i
yi + αiλi − βiαi, βiyi + αiλi − βiαi } + λCxj � 0. (16)

This constraint is, by introducing variables wi’s, rewritten as

β
i
yi + αiλi − βiαi � wi for i = 1, . . . , p (17)

βiyi + αiλi − βiαi � wi for i = 1, . . . , p (18)
p∑
i=1

wi + λCxj � 0. (19)

Thus we yield a linear programming relaxation of (P k) restricted to a smaller hy-
percube Y

′ × ′ contained in Y × . In Benson (1991) (16) is further relaxed to a
single linear inequality.

It would be a routine to construct a branch-and-bound algorithm based on this
relaxation. If we employ the bisection procudure to divide a hypercube, i.e., to
divide it into two hypercubes with equal volumes such that the midpoint of one of
the longest edges is a vertex of both new hypercubes, we will see the following
theorem.
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THEOREM 4.6. If the branch-and-bound procedure does not terminate after a
finite number of iterations, any accumulation point of the sequence (xν, yν, λν,wν)
generated by the procedure is an optimal solution of (P k).

See, for example, Section 4 of Chapter VII in Horst and Tuy (1996) for the conver-
gence proof.

5. Face search algorithm

In this section we introduce the algorithm for Problem (PE) proposed by Sayin
(2000), which is based on the enumeration method of efficient faces in Sayin
(1996).

For a point x ∈ X let I (x) be the index set of zero components of x, i.e.,
I (x) = { i | i ∈ {1, . . . , n}; xi = 0 }. For I ⊆ {1, . . . , n} let

F(I) = { x | x ∈ X; xi = 0 for i ∈ I }, (20)

which is a, possibly vacant, face of X. Then the efficient set XE is decomposed as

XE =
⋃

I⊆{1,...,n}
(XE ∩ F(I)). (21)

Therefore Problem (PE) reduces to the family of following problems

(PE(I ))

∣∣∣∣∣ max φ(x)

s.t. x ∈ XE ∩ F(I),

each of which is corresponding to I ⊆ {1, . . . , n}. For a mutually disjoint decom-
position ofXE see Corollary 3.3 in Benson (1995). SinceXE∩F(I) ⊆ X∩F(I) =
F(I),

(PE(I ))

∣∣∣∣∣ max φ(x)

s.t. x ∈ F(I).

is a relaxation problem of (PE(I )). Note that this is a linear program when φ is a
linear function.

Suppose we have at hand an incumbent, i.e., a point x∗ ∈ XE, and the list of
problems (PE(I )) to solve. At the beginning the list consists of the single problem
(PE(∅)), which is identical to (PE) since F(∅) = X. Choosing a problem (PE(I ))
on the list and solving its relaxation (PE(I )), we have the following cases.
1. (PE(I )) is infeasible: Problem (PE(I )) is fathomed and deleted from the list.
2. (PE(I )) has an optimal solution x.

(a) φ(x) < φ(x∗): Problem (PE(I )) is fathomed and deleted from the list.
(b) φ(x) > φ(x∗):
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(i) x ∈ XE: The incumbent is updated as x∗ = x, and Problem (PE(I )) is
fathomed and deleted from the list.

(ii) x �∈ XE: Problem (PE(I )) is fathomed and deleted from the list, and
for each index k ∈ {1, . . . , n} \ I Problem (PE(I ∪ {k})) is added to
the list.

The last case where x �∈ XE may need an explanation. We see from Theorem 2.7
that no point in the relative interior of F(I) is efficient in this case. Since any point
in the relative boundary of F(I) belongs to F(I ∪{k}) for some k ∈ {1, . . . , n} \ I ,
Problem (PE(I )) is fathomed and can be deleted from the list.

In the case of x �∈ XE , if xk = 0, it remains optimal to Problem (PE(I ∪ {k})),
which therefore needs not be solved. Even if this is not the case, Probelm (PE(I ∪
{k})) differs slightly from (PE(I )).

The key issue of implementation would be the list-management as it is always
the case in the branch-and-bound method. Especially, a subset I = {i1, . . . , i#} of
{1, . . . , n} would be generated from each of {i2, . . . , i#}, {i1, i3, . . . , i#},. . . , and
{i1, . . . , i#−1}. The redundacy can be avoided by a simple technique. Even incor-
porating the technique, the list grows very rapidly and becomes too larg to keep in
the memory. Due to the rapid growth of problem list, the computational experiment
reported in Sayin (2000) is restricted in problem size.

6. Branch-and-bound algorithm

This section is devoted to introducing the branch-and-bound algorithm for Prob-
lem (PW ) with a concave function φ proposed by Horst and Thoai (1999) and
Thoai (2001).

First they observe the following characterization of the weakly efficient out-
come set YW .

LEMMA 6.1. Let ∂Y� denote the boundary of Y�. Then YW = Y ∩ ∂Y�.
Proof. This lemma follows the equivalence Y ∩ int Y� = Y \ YW . If y ∈ Y ∩

int Y�, y < y′ for some y′ ∈ Y� , for which there is y′′ ∈ Y such that y′ � y′′.
Therefore y �∈ YW . If y ∈ Y \ YW , there is y′ ∈ Y with y < y′, and hence
its neighbor { z | z ∈ Rp; y − (y′ − y) � z � y′ } is contained in Y� . This implies
y ∈ int Y� . �

Then Problem (PW ) is rewritten as

max {φ(x) | x ∈ X;Cx ∈ ∂Y� }. (22)

Introducing additional variables y ∈ Rp and t ∈ R, it is cast into the following
problem called Master Problem
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(MP)

∣∣∣∣∣∣∣∣∣∣∣∣

max t

s.t. t � φ(x)
x ∈ X
y = Cx
y ∈ ∂Y�,

for which the following theorem holds.

THEOREM 6.2. If x∗ is an optimal solution of (PW ), then (x∗, y∗, t∗) with y∗ =
Cx∗, t∗ = φ(x∗) is an optimal solution of (MP ). If (x∗, y∗, t∗) is an optimal
solution of (MP ), then x∗ is an optimal solution of (PW ) with φ(x∗) = t∗.
Since we assume that the feasible region X is bounded, there is a point y0 ∈ Rp
whose ith component y0

i satisfies

y0
i � min { yi | y ∈ Y } = min { cix | x ∈ X }. (23)

Then

YW ⊆ (y0 + Rp+) ∩ ∂Y� ⊆ (y0 + Rp+) ∩ Y�. (24)

The key idea of the algorithm is to decompose the truncated lower outcome set
(y0 + Rp+) ∩ Y� into cones K with vertex at y0 and consider the subproblem
(MP(K)) with variable y restricted to ∂Y� ∩K

(MP(K))

∣∣∣∣∣∣∣∣∣∣∣∣

max t

s.t. t � φ(x)
x ∈ X
y = Cx
y ∈ ∂Y� ∩K.

There are two things to have done: to replace the concave function φ by a function
easier to handle, and to construct a polyhedral set containing Y ∩ ∂Y� ∩K. They
propose a piecewise linear concave function : to replace φ. Suppose we have a
finite number of points x1, . . . , xk in the domain of φ and a subgradient si ∈ Rn of
φ at xi . Then

:(x) = min {φ(xi)+ si(x − xi) | i = 1, . . . , k } (25)

is a piecewise linear concave function which overestimates φ, i,e.,:(x) � φ(x) at
any point x. Furthermore note that the constraint t � φ(x) with φ replaced by: is
equivalent to the k linear inequality constraints

t � φ(xi)+ si(x − xi) for i = 1, . . . , k. (26)
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Let r1, . . . , rp ∈ Rp be p extreme rays generating the cone K−y0 and for each
i = 1, . . . , p let yi be the intersection point of the ray { y | y = y0 + αri;α � 0 }
and ∂Y�. The intersection point yi is found by solving the linear program

max {α | y0 + αri � Cx; x ∈ X;α � 0 }. (27)

Once we have these points y1, . . . , yp and the hyperplane, say H , passing through
them, we see the following lemma. See Fig. 2.

LEMMA 6.3. Let H+ be the half space defined by H that does not contain y0.
Then

Y ∩ ∂Y� ∩K ⊆ Y ∩ Y� ∩K ∩H+ = Y ∩K ∩H+. (28)

Therefore as a relaxation problem of (MP(K)) we obtain

(MP (K))

∣∣∣∣∣∣∣∣∣∣∣∣

max t

s.t. t � φ(xi)+ si(x − xi) for i = 1, . . . , k.

x ∈ X
y = Cx
y ∈ K ∩H+.

Figure 2. Problem (MP(K)).

Let V be the p × p matrix consisting of columns y1 − y0, . . . , yp − y0, then the
last two constraints are equivalent to

Cx = Vµ+ y0; eµ � 1; µ ∈ Rp+. (29)
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Clearly the optimal value of (MP(K)) provides an upper bound of the optimal
value of (MP(K)).

Once the relaxation problem is so constructed, it will be a routine to make a
branch-and-bound algorithm and we omit the description. To guarantee the con-
vergence
1. the piecewise linear approximation : of φ should become better, and
2. the conical partition should become finer

as the process proceeds. Everytime an optimal solution (x(K), y(K), t (K)) of
Problem (MP(K)) is obtained, the set of points x1, . . . , xk is incremented by
x(K), which improves the approximation accuracy of :. Concerning the conical
partition, the desired property is referred to as exhaustiveness and defined as

DEFINITION 6.4. The partition procedure is said to be exhaustive when
⋂
k K

k

is a ray for any nested sequence {Kk}k=1,... of cones generated by the procedure.

See Horst and Tuy (1996) for a full detail of exhaustiveness.

THEOREM 6.5. Assume that the conical partition procedure is exhaustive. Then
every cluster point (x∗, y∗, t∗) of the sequence of points (xν, yν, tν) generated by
the branch-and-bound algorithm is a solution of Master Problem (MP ). Hence x∗
is a solution of (PW ).

Preliminary computational results are reported in Thoai (2001) for linear case. He
ran the algorithm on randomly generated test problems with p = 2 to 4,m = 10 to
50 and n = 35 to 250, and reported the average number of iterations, the maximal
number of cones stored at an iteration and the average CPU time.

7. Lagrangian relaxation methods

White (1996) considered Problem (PE) with linear function φ(x) = dx and presen-
ted several equivalent formulations. Dauer and Fosnaugh (1995) considered the
problem with quasi-convex function φ and showed a way of converting it to a
bicriteria problem, which could be viewed as a Lagrangian relaxation of Problem
(PE). An, Tao and Muu An, Tao and Muu (1996) showed that there is no duality
gap for a sufficiently large Lagrangian multiplier. We will explain the common idea
in terms of the Lagrangian relaxation method. The central role will be played by
the gap function g : X→ R defined by

g(x) = max { eCx′ | x′ ∈ X;Cx′ � Cx } − eCx. (30)

We call a point x′ that attains the maximum above a projected point of x. It is
easily seen from the theory of parmetric linear program that g is a piecewise linear
concave function on X. As stated in Theorem 2.7 g(x) � 0 for x ∈ X, and x ∈ XE
if and only if g(x) = 0 for x ∈ X. See Theorem 4.1 of Benson (1995). Thus
Problem (PE) is reformulated as follows:
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Figure 3. z(π) and φ(v)− πg(v).

(PE)

∣∣∣∣∣∣∣
max φ(x)

s.t. x ∈ X
g(x) � 0.

Note that the last constraint g(x) � 0 is a reverse convex constraint, which has
been attracting attention. See, for example, Horst and Tuy (1996) and Tuy (1998).
To solve Problem (PE) we combine the objective function φ(x) with the constraint
g(x) � 0 multiplied by a Lagrangian multiplier π � 0 to have the Lagrangian
relaxation problem

(Q(π))

∣∣∣∣∣ z(π) = max φ(x)− πg(x)
s.t. x ∈ X.

In the sequel x(π) denotes an optimal solution of (Q(π)) and x′(π) denotes its
projected point. Note that (Q(π)) is a quasi-convex maximization and that the
optimality is always attained at a vertex of X. For we assume that X is a polytope,
we reformulate Problem (Q(π)) in terms of the vertices of X and obtain

z(π) = max {φ(v)− πg(v) | v ∈ XV }. (31)

Note that for each vertex v ∈ XV the function φ(v) − πg(v) is a linear function
with nonpositive slope in variable π . In Figure 3 are shown these linear functions
as well as z(π) depicted by a bold piecewise linear line. Notice that horizontal
lines, meaning g(v) = 0, correspond to vertices in XE .

Though the following lemmas are straightforward from this observation, brief
proofs will be given.

LEMMA 7.1. If g(x(π)) = 0 for some π � 0, then x(π) is an optimal solution of
(PE).
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Proof. For any x in XE , we readily see φ(x(π)) = φ(x(π)) − πg(x(π)) �
φ(x)− πg(x) = φ(x). �
Concerning z(π) we have the following property.

LEMMA 7.2. Let 0 � π � π ′ and let x′(π) be a projected point of x(π). Then

φ(x′(π)) � φ(PE) � z(π ′) � z(π). (32)

Proof. Since the projected point lies in XE , the first inequality is trivial. By the
definition of z(π ′), it holds that φ(x)−π ′g(x) � z(π ′) for any x ∈ X and also for
any x ∈ XE . Then we see φ(x) � z(π ′) for any x ∈ XE , which implies the second
inequality. The last inequality is derived from z(π ′) = φ(x(π ′)) − π ′g(x(π ′)) �
φ(x(π ′))− πg(x(π ′)) � φ(x(π))− πg(x(π)) = z(π). �
This lemma means that z(π) gives an upper bound of φ(PE) and also x′(π), the
projected point of x(π), gives a lower bound. Above two lemmas suggest that
solution x(π) of (Q(π)) for a sufficiently large π > 0 solves Problem (PE). In
fact, because of the finiteness of XV we readily see the following theorem. See
Figure 3.

THEOREM 7.3. There is a π∗ > 0 such that for any π > π∗ x(π) is an optimal
solution of (PE).

An, Tao and Muu showed the same result for a convex funtion φ in Lemma 4 of An
et al. (1996). Dauer and Fosnaugh showed in (1995) that z(π) converges to φ(PE)
as π goes to infinity for a more general setting.

Muu (2000) reduces the variables of the gap function by using Lemma 2.6. Let
r be the rank of C and without loss of generality we assume that the first r rows
c1, . . . , cr are linearly independent. Let L be the range space of matrix C and L⊥
be its orthogonal complement in Rn and suppose we have a basis br+1, . . . , bn of

L⊥. Then any x ∈ Rn is uniquely represented as x = C α + Bβ for α ∈ Rr and
β ∈ Rn−r , where C is the matrix of rows c1, . . . , cr and B is the matrix of columns
br+1, . . . , bn. Then Problem (Q(π)) is rewritten as∣∣∣∣∣ z(π) = max φ(C

 
α + Bβ)− πg(C α + Bβ)

s.t. C
 
α + Bβ ∈ X.

We see, however, by Lemma 2.6 that

g(C
 
α + Bβ) = g(C α), (33)

then Problem (Q(π)) is
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z(π) = max φ(C

 
α + Bβ)− πg(C α)

s.t. AC
 
α + ABβ = b

C
 
α + Bβ � 0.

The rank r of C is no more than p, which is usually much smaller than n. When
φ is a linear function, the above problem contains a small number of nonconvex
variables.

Dauer and Fosnaugh (1995) also showed that when φ is a linear function dx
and d is a linear combination of rows ci’s of C, i.e., d = γC for some γ ∈ Rp,
the π∗ in Theorem 7.3 is given by ‖γ ‖∞. Notice that this value is 1 if d = ±ci for
some i = 1, . . . , p. Muu (2000) generalized this result to the nonlinear case where
φ(x) is given by ϕ(Cx) for some function ϕ.

The transformation of Problem (PE) by White (1996) is based on Theorem 2.7.
Note that Problem (PE) is equivalent to

max

{
φ(x)

∣∣∣∣ x ∈ X;λ ∈  ;µ ∈ Rm;µA− λC � 0;λCx − µb = 0

}
. (34)

By multiplying the bilinear constraint λCx −µb = 0 by π we have its Lagrangian
relaxation

max

{
φ(x)+ π(λCx − µb)

∣∣∣∣ x ∈ X;λ ∈  ;µ ∈ Rm;µA− λC � 0

}
(35)

which is to maximize a bilinear objective function under linear inequality con-
straints. Several properties of this relaxation are discussed in White (1996).

8. Dual approach

Nonconvex duality is one of the most promising subject in the global optimization.
We will not go into details of the duality theory in this paper. The readers who
are interested in it should refer Atteia and El Qortobi (1981) and Thach (1991,
1993, 1994). In this section we will briefly explain the dual approach of Thach et
al. (1996).

Let

C� = { y | y ∈ Rn;Cy � 0; ciy < 0 for some i = 1, . . . , p }. (36)

Then the efficient set XE is written as the difference of two convex sets. See
Figure 4.

LEMMA 8.1.

XE = X \ (X + C�). (37)
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Figure 4. XE = X \ (X + C�).

Proof.

XE = { x | x ∈ X;�x′ such that Cx′ � Cx, cix′ > cix for some i }
= X \ { x | ∃x′ such that Cx′ � Cx, cix′ > cix for some i }
= X \ { x | ∃x′ such that C(x − x′) � 0, ci(x − x′) < 0 for some i }
= X \ { x + y | x ∈ X;Cy � 0; ciy < 0 for some i }
= X \ (X + C�).

�
Then Problem (PE) is written as

(PE)

∣∣∣∣∣ max φ(x)

s.t. x ∈ X \ (X + C�).

Since X is now assumed to be a polytope, we show that the set X + C� can be
replaced by the interior of a closed convex set. Let E be the p × p matrix all of
whose elements are unity, and for a positive parameter s define a p× p matrix Cs ,
sets C�

s and Xs by

Cs = (I + sE)C (38)

C�
s = { y | Csy � 0 } (39)

Xs = X \ int(X + C�
s ), (40)
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where I is the p × p indentity matrix. Note that Xs is also the difference of two
convex sets.

LEMMA 8.2.

Xs =
{
x

∣∣∣∣ x ∈ X; ∃λ ∈ Rp+ \ {0} such that
λCsx � λCsx′ for all x′ ∈ X

}
. (41)

Proof. Let x be a point in Xs . By the separation theorem, there is a v �= 0
satisfying vx � vz for all z ∈ X + C�

s . Hence vx � v(x + y) holds for all y such
that Csy � 0. Applying Farkas’ alternative theorem, we have v = λCs for some
λ ∈ Rp+ \ {0}, and hence λCsx � λCsz holds for all z ∈ X + C�

s . Noting that
0 ∈ C�

s we see that λCsx � λCsx
′ for all x′ ∈ X, and hence x is contained in the

set on the right side.
Suppose x maximizes λCsx overX for some λ ∈ Rp+ \{0}. Then clearly it also

maximizes λCsx over X + C�
s and does not lie in the interior of X + C�

s . �
By this lemma we see that Xs coincides with XE when s is sufficiently small.

LEMMA 8.3. There is an ŝ > 0 such that Xs = XE if 0 < s < ŝ.
Proof. To show that Xs ⊆ XE , choose arbitrarily x ∈ Xs . Then by the above

lemma, there is a λ ∈ Rp+ \ {0} such that x maximizes λCsx over X. Here we
assume that λ1 = 1 without loss of generality. Substituting the definition for Cs ,
we see λCs = (λ+ se)C. This and the equality (2)

XE = { x | x ∈ X; ∃λ ∈ Rp++ such that λCx � λCx′ for ∀x′ ∈ X }
of Theorem 2.7 imply that x ∈ XE .

By Theorem 2.7 XE is the union of finitely many faces F 1, . . . , FL of X such
that F# is the optimal set of maximizing λ#Cx over X for some λ# ∈ Rp++ such
that λ#1 = 1. Let ŝ = min { λ#i /(1− pλ#i ) | λ#i < 1/p } and choose s such that
0 < s < ŝ. Then s/(1 + sp) < λ#i for all # = 1, . . . , L and i = 1, . . . , p. Let
θ#i = λ#i − s

1+sp for # = 1, . . . , L, i = 1, . . . , p. Then we readily see that θ#i > 0
and

λ#C = θ#Cs. (42)

This means that F# ⊆ Xs by Lemma 8.2, and hence XE ⊆ Xs . �
We assume hereafter that 0 < s < ŝ. Then Problem (PE) is equivalently rewritten
as

(PE)

∣∣∣∣∣ max φ(x)

s.t. x ∈ Xs = X \ int(X + C�
s ).

For v ∈ Rn let

ξ(v) = sup {φ(x) | x ∈ X; vx � 1 }, (43)
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where ξ(v) = −∞ when { x | x ∈ X; vx � 1 } = ∅.

DEFINITION 8.4. For Z ⊆ Rn the set { v | v ∈ Rn; vx � 1 for all x ∈ Z } is
called the polar set of Z and denoted by Z◦.

See for example Section 2.14 of Stoer and Witzgall (1970), and Section E of
Chapter 11 in Rockafellar and Wets (1998) for the properties of polar set. We
here assume that 0 ∈ intX, intC�

s �= ∅ and φ is a concave function. Then by the
nonconvex duality theory of Thach (1991) we obtain the following duality theorem
between Problem (PE) and its dual problem

(Ds)

∣∣∣∣∣ max ξ(v)

s.t. v ∈ (X + C�
s )
◦.

THEOREM 8.5. Let ξ(Ds) denote the optimal value of (Ds), then

φ(PE) = ξ(Ds).
Proof. See Thach (1991) and Chapter 4 of Konno, Thach and Tuy (1997). �
Since 0 ∈ intX, (X + C�

s )
◦ ⊆ (C�

s )
◦, which is identical to { γCs | γ ∈

Rp+ }. Therefore v ∈ (X + C�
s )

◦ if and only if v = γCs for some γ ∈ Rp+ and
sup{ v(x + y) | x ∈ X; y ∈ C�

s } � 1. The latter condition can be replaced by
sup { vx | x ∈ X } � 1 from the definition of C�

s and v = γCs. Letting

D = { γ | γ ∈ Rp+; supx∈X γCsx � 1 }, (44)

we have

(X + C�
s )
◦ = { γCs | γ ∈ D }. (45)

Now let

E(γ ) = sup {φ(x) | x ∈ X; γCsx � 1 }. (46)

The above argument yields an equivalent form of (Ds) in variable γ ∈ Rp.

THEOREM 8.6. Problem (Ds) is equivalent to∣∣∣∣∣ max E(γ )

s.t. γ ∈ D.

We will see that this problem is a quasi-convex maximization over a convex poly-
hedral set.



308 Y. YAMAMOTO

LEMMA 8.7.
(i) D is a convex polyhedral subset of Rp.

(ii) E is a quasi-convex function.

Proof. The first assertion can be seen from the finitely constrained representa-
tion

D = { γ | γ ∈ Rp+; γCsx � 1 for x ∈ XV }.
To show the second assertion let γ 1, γ 2 be two point of the level set { γ | E(γ ) � α },
meaning sup {φ(x) | x ∈ X; γ kCsx � 1 } � α for k = 1, 2, and suppose sup{φ(x) |
x ∈ X; (βγ 1+ (1−β)γ 2)Csx � 1 } > α for some β ∈ (0, 1). Then there is x̃ ∈ X
such that (βγ 1 + (1 − β)γ 2)Csx̃ � 1 and φ(x̃) > α. For x̃ either γ 1Csx̃ � 1
or γ 2Csx̃ � 1 holds. Hence we obtain either sup{φ(x) | x ∈ X; γ 1Csx �
1 } � φ(x̃) > α or sup{φ(x) | x ∈ X; γ 2Csx � 1 } � φ(x̃) > α, which is a
contradiction. �

They exploited the outer approximation method to solve the dual problem in
Theorem 8.6 and proposed the following algorithm. See Figure 5.
〈0〉 (Initialization) Construct a polyhedral set D0 such that D ⊆ D0 and the vertex

set of D0 is easily enumerated. Set k = 0 and go to 〈k〉.
〈k〉 (Iteration k)
〈k1〉 Solve the relaxation problem∣∣∣∣∣ max E(γ )

s.t. γ ∈ Dk

to obtain a solution γ k.
〈k2〉 Solve the linear program∣∣∣∣∣ max γ kCsx

s.t. x ∈ X

to obtain a vertex solution xk and the optimal value σ k = γ kCsxk .
〈k3〉 If σ k � 1, meaning that γ k is in D and hence solves max{E(γ ) | γ ∈ D },

then solve max {φ(x) | x ∈ X; γ kCsx � 1 } and obtain a solution x∗. Stop
with x∗ as an optimal solution of (PE).

〈k4〉 If σ k > 1, meaning γ k �∈ D, reduce Dk to Dk+1 = Dk ∩ { γ | γCsxk � 1 }.
Set k = k + 1 and go to 〈k〉.

THEOREM 8.8. The algorithm terminates after a finite number of iterations and
provides an optimal solution of (PE).
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Figure 5. X + C�
s and its polar.

Proof. The theorem is readily seen from the fact that D is a polyhedral set
defined by a finite number of constraints each of which corresponds to a vertex of
X and that {xk}k=0,1,... generated by the algorithm is a sequence of distinct vertices
of X. �

The most costly step of the algorithm is 〈k1〉 of maximizing E(γ ) over Dk.
Thach, Konno and Yokota (1996) proposed to enumerate the vertex set of Dk+1

from that of Dk in this step. Numerical results are reported in Thach et al. (1996)
with two different objective functions: absolute deviation φ(x) = −∑n

i=1wi |xi −
x̄i| and linear function φ(x) = −∑n

i=1 wixi . They used the enumeration method
by Thieu et al. (1983) in 〈k1〉. They fixed m = 20 and varied p = 2–5, n =
20–100, and concluded that the number of vertices generated through the compu-
tation does not grow very rapidly as long as p is kept small, and also most of the
computation time was spent in solving linear programs.

Based on the same duality concept Yamada et al. (2000) proposed an algorithm
to the problem (PW ) with the concave objective function φ and the closed convex
feasible region X satisfying Slater’s constraint qualification.

9. Bisection search algorithm

This section is devoted to the explanation of the algorithm proposed by Phong and
Tuyen (2000) for Problem (PE) with linear objective function φ(x) = dx. The
main idea is the bisection method for locating φ(PE). Namely, they start with an
interval [#0, u0] which is known to contain φ(PE), solve for α = (#k + uk)/2



310 Y. YAMAMOTO

(Pα)

∣∣∣ Find x ∈ XE such that dx � α

and then reduce the interval [#k, uk] to either [α, uk] when (Pα) has a solution or
[#k, α] when (Pα) has no solution. Thus after a finitely many iterations they obtain
an ε-approximate solution.

For λ ∈  let σ (λ) denote the optimal value of Problem (SC(λ)), i.e.,

σ (λ) = max { λCx | x ∈ X }, (47)

and

τα(λ) = max { λCx | x ∈ X; dx � α }. (48)

Since X is the convex hull of its vertex set XV and an efficient vertex solves
Problem (SC(λ)) for λ ∈  , we see

LEMMA 9.1.
(i) σ (λ) = max { λCv | v ∈ XE ∩XV } for λ ∈  .

(ii) σ (·) is a piecewise linear convex function on  .

Proof. From (i) σ is the maximum of finitely many linear functions λCv each of
which corresponds to a vertex v of XE ∩XV . Thus it is piecewise linear convex. �
In the same way we obtain

LEMMA 9.2.
(i) τα(λ) = max{ λCv | v is an efficient vertex of X ∩ { x | dx � α } }.

(ii) τα(λ) � σ (λ) for any λ ∈ Rp.
(iii) τα(·) is a piecewise linear convex function on  .
(iv) τα(λ) is a nonincreasing function in α ∈ R.

Let us denote the epigraph of σ by epi σ , i.e.,

epi σ = { (λ, µ) | (λ, µ) ∈  × R;σ (λ) � µ }. (49)

For the existence of a solution of (Pα) we have the following theorem.

THEOREM 9.3.
(i) XE ∩ { x | dx � α } �= ∅ if and only if σ (λ) = τα(λ) for some λ ∈  .

(ii) σ (λ) = τα(λ) for some λ ∈  if and only if there is a vertex (λ̄, µ̄) of epi σ
such that µ̄ = τα(λ̄).

Proof. We show only the first assertion because the second assertion is clear
from the piecewise linearity of σ and the fact that τα � σ .

Suppose x ∈ XE ∩ { x | dx � α }, then σ (λ) = λCx for some λ ∈  . Since
dx � α, λCx � τα(λ) � σ (λ). Therefore σ (λ) = τα(λ).
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Figure 6. σ and τα .

Suppose σ (λ) = τα(λ) at λ ∈  and let x be a point that attains max{ λCx |
x ∈ X; dx � α } = τα(λ). Then, since σ (λ) = τα(λ), x maximizes λCx over X,
meaning x ∈ XE . �

Now let W be a nonempty subset of XE ∩XV and let

σW(λ) = max { λCv | v ∈ W }. (50)

Then for any λ ∈  
σW(λ) � σ (λ) (51)

and we have the following corollary from Theorem 9.3 and the piecewise linearity
of σW(λ).

COROLLARY 9.4.
(i) τα(λ) < σW(λ) for any λ ∈  , then XE ∩ { x | dx � α } = ∅.

(ii) τα(λ) � σW(λ) for some λ ∈  if and only if there is a vertex (λ̄, µ̄) of epi σW
such that µ̄ � τα(λ̄).

This corollary means that we can check whether τα(λ) = σW(λ) at some λ ∈  
by evaluating τα(λ̄) at vertices (λ̄, µ̄) of epi σW . If τα(λ̄) < µ̄ for every vertex
(λ̄, µ̄), we conclude that τα < σ , and hence XE ∩ { x | dx � α } = ∅ by (i) of
Theorem 9.3. Otherwise, i.e., we have found a vertex (λ̄, µ̄) with τα(λ̄) � µ̄. Two
possible cases occur. If σ (λ̄) � µ̄, implying σ (λ̄) = µ̄ = τα(λ̄), we see that
XE ∩ { x | dx � α } �= ∅ by Theorem 9.3. If σ (λ̄) > µ̄, a vertex v̄ of X that attains
max { λ̄Cx | x ∈ X } is not in W . Then W is incremented by this vertex v̄ to make
a better underestimation σW∪{v̄} of σ . (See Fig. 6).
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LEMMA 9.5. The above procedure terminates after a finite number of increment-
ation of W and shows whether XE ∩ { x | dx � α } is empty or not.

Proof. Clear from the finiteness of the vertices of X. �
The main technique used in the procedure is generating the vertex set of epi σW∪{v̄}

from that of epi σW . Note first that epi σW is represented by finitely many linear
inequalities each of which corresponds to a vertex ofW :

epi σW = { (λ, µ) | (λ, µ) ∈  × R;µ− λCv � 0 for v ∈ W }. (52)

Suppose that we have known the vertex set of epi σW , the second case above occurs
and we find a vertex v̄ of X by maximizing λ̄Cx over X. This vertex will add an
inequality µ − λCv̄ � 0, which cuts off the vertex (λ̄, µ̄) of epi σW . To generate
the vertex set of epi σW∪{v̄} we have only to generate the vertex set of (epi σW) ∩
{ (λ, µ) | µ− λCv̄ = 0 }. There have been proposed a lot of algorithms for this
purpose, e.g., Horst et al. (1988), Chen et al. (1991) and Thieu et al. (1983). See
also Section 4.2, Chapter II of Horst and Tuy (1996).

For a given tolerance ε > 0 after finitely many bisections we obtain an interval
[#k, uk] such that (Puk ) has no solution while (P#k ) has a solution together with
λ̄ ∈  at which σ coincides with τ#k . Then solve max { λ̄Cx | x ∈ X; dx � #k } to
obtain x∗. This is an ε-approximate solution of Problem (PE), i.e., x∗ ∈ XE and
dx∗ � dx − ε for any x ∈ XE .

Phong and Tuyen (2000) report that an illustrative example of p = 2, n =
3,m = 4 required 11 iterations for ε = 0.1.

10. Other methods

Benson and Sayin (1994) consider four special cases of linear (PE), and propose
simple linear programming procedures. Benson and Lee (1996) consider (MC)
with two criteria and propose an algorithm for maximizing an upper semicontinu-
ous function φ. In this case the outcome set Y is of dimension at most two, and YE
is of dimension at most one, i.e., YE consists of edges and vertices.

Thoai (2000) considers the case where φ(x) = ϕ(Cx) and propose an outer
approximation algorithm. He assumes that ϕ is a quasi-convex function and non-
decreasing in the sense that y′ � y implies ϕ(y′) � ϕ(y). It is seen that

max { ϕ(Cx) | x ∈ XE } = max { ϕ(Cx) | x ∈ X }. (53)

His algorithm makes a sequence of polyhedral sets Y k shrinking to the lower
outcome set Y�, solves the relaxation problem max{ ϕ(y) | y ∈ Y kE } to find a
solution yk , where Y kE is the set of efficient points of Y k. If yk ∈ Y� , any point
x ∈ X with Cx = yk is an optimal solution of (PE). Otherwise, it generates a
cutting plane defined by the linear equation #k(y) = 0 to cut yk off the set Y k and
reduces Y k to Y k+1 ∩ { y | y ∈ Rp; #k(y) � 0 }. Since ϕ is quasi-convex, a vertex
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of Y k attains max { ϕ(y) | y ∈ Y kE }. Thus for solving the relaxation problem he
proposes to compute all the vertices of Y k+1 from the vertex set of Y k. The key
of the algorithm is the step of checking whether yk lies in Y� and generating the
cutting plane. Note that X = { x | x ∈ Rn+;Ax = b }, then yk ∈ Y� if and only if
the system

yk � Cx; Ax = b; x � 0 (54)

has a solution x. By the linear programming duality theorem this is equivalent to

max {−λyk + µb | −λC + µA � 0;λ � 0 } = 0. (55)

When this problem has a positive optimal value, yk �∈ Y� and further #k(y) =
−λky+µkb = 0 is the desired cutting plane, where (λk, µk) is an optimal solution
of this problem. In Theorem 4.1 of Thoai (2000) the procedure is shown to be fi-
nite. Thoai also considers the nonlinear case, namely φ(x) = ϕ(c1(x), . . . , cp(x)),
ci(x)’s are concave functions, and also X is a closed convex set defined by nonlin-
ear inequalities. A preliminary experiment for the quadratically constrained prob-
lems with quadratic ci’s shows that the most expensive step of the algorithm is the
enumeration of vertices, whose number grows rapidly as the number p of criteria
increases.

One of the often occured objective functions φ is φ(x) = −cix, i.e., (PE) is
to minimize the ith objective function cix of Cx. To estimate the optimal value of
this problem, the process of using the payoff table was proposed by several authors.
See for example Section 9.13 of Steuer (1985). Consider the linear program

max { cjx | x ∈ X } (56)

and let xj be its optimal solution for j = 1, . . . , p. Then the payoff table is
the matrix whose (i, j)-element is cixj (Table 1). The popular way of estimat-
ing min { cix | x ∈ XE } is to scan the table and determine the minimum of each
column. Notice that this column-wise minimum value gives neither an upper bound
nor an lower bound of min { cix | x ∈ XE } because xj might not be efficient. In or-
der to ensure that xj is efficient, lexicographical maximization could be employed,
i.e., to find x1 first maximize c1x over X and obtain the optimal value z1, maximize
c2x overX∩{ x | c1x = z1 }, and maximize c3x overX∩{ x | c1x = z1; c2x = z2 }

Table 1. Payoff table.

1 2 · · · p

1 c1x1 c1x2 · · · c1xp

· · ·
p cpx1 cpx2 · · · cpxp
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Figure 7. Maximum flow versus minimum maximal flow.

and so on. Then each column-wise minimum of the payoff table thus obtained
gives an upper bound of min { cix | x ∈ XE }. In Isermann and Steuer (1987) and
Reeves and Reid (1988) it is reported how a good approximation is obtained from
the payoff table based on the computational experience of randomly generated
problems.

11. Conclusion

Most of the algorithms reviewed in this paper anticipate a small number of criteria
of Problem (MC) and convert Problem (PE) to a global optimization problem in
p or so variables. However, there are interesting and important problems that do
not enjoy the low dimensionality of p. An example is the minimum maximal flow
problem that has a close relation with the uncontrolable flow problem raised by Iri
(1994, 1996). Let (V , s, t, E, ∂+, ∂−, c) denote a network with node set V , arc set
E, source node s, sink node t , incidence functions ∂+ and ∂−, and a nonnegative
capacity ce for each arc e. A vector x ∈ R|E| is said to be a feasible flow if it
satisfies the conservation equations and capacity constraints:∑

∂+e=v
xe =

∑
∂−e=v

xe for all v ∈ V (57)

0 � xe � ce for all e ∈ E. (58)
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A feasible flow x is said to be a maximal feasible flow if there is no feasible flow
x′ such that x′ � x and x′ �= x. The flow value, denoted by v(x), of flow x is

v(x) =
∑
∂+e=s

xe −
∑
∂−e=s

xe. (59)

The problem is to find a maximal flow with the minimum flow value. Note that this
problem embraces the minimum maximal matching problem, which is known to
be NP -hard, (e.g. Garay and Johnson, 1979). An example of Iri (1996) is shown
in Figure 7. The maximum flow value grows as the arc capacity c increases, while
the minimum maximal flow value does not.

Let (MC) be defined for C = I , the indentity matrix of dimension |E|, and
the set of feasible flows X, and let φ(x) = −v(x). Then the minimum maximal
flow problem reduces to Problem (PE). Problem (MC) has the objective functions
as many as the variables, the algorithms that exploit the low dimensionality of p
would not work efficiently. The algorithm based on the outer approximation in Shi
and Yamamoto (1997) is not satisfactory. Further research is needed.

Even when p is small, few algorithms are yet tried and tested, and we hardly
derive any conclusion about the efficiency of the algorithms. Organized computa-
tional experiment should be carried out.
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